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Abstract. The ground-state properties of several finite two-dimensional clusters were 
numerically investigated within the Hubbard model. In particular the spatial distribution of 
holes (with respect to the half-filled band case) is studied in detail. It is found that in systems 
with frustrated sites the holes prefer to occupy these sites for large U ,  and repel each other. 
This effect can be used to stabilise the antiferromagnetic order in the clusters by introducing 
coupling to additional sites. 

1. Introduction 

One-dimensional and two-dimensional strongly correlated electronic systems have 
already been extensively studied, mainly as a model for the magnetic properties of 
solids. The recently discovered superconductivity in materials of the type La,Cu04 or 
YBa,CuO,-, has renewed interest in the two-dimensional Hubbard models, since it is 
generally believed that this phenomenon is probably a result of a direct (non-phonon 
mediated) interaction between electrons that are placed on a two-dimensional lattice. 
Many experimental results (Batlogg et a1 1987, Bourne et a1 1987, Leary et a1 1987, 
Birgeneau et a1 1987, Shirane et af 1987) suggest that models of this type may describe at 
least some important aspects of the high-Tc superconductivity. In several of these models 
non half-filled band cases were examined and holes were considered as the charge 
carriers (Huang and Manousakis 1987, Schrieffer et af 1988). Although we do not intend 
to study in detail a possible superconducting state in such systems, we will, however, 
examine the influence of holes on the spin structure of the ground state of a Hubbard 
lattice. 

Since there are only a few known analytic results for the infinite two-dimensional 
Hubbard lattice, several studies have been conducted on small systems with a limited 
number of sites with the hope that from these results one can obtain some insight into 
the infinite system. Both exact diagonalisation methods and variational techniques were 
used in these studies and several interesting results were obtained (Kawabata 1979, 
Hirsch 1985, Callaway et a1 1987, Callaway 1987, Sano and Takano 1987, Hirsch et a1 
1988, Pesch et a1 1988). Following this idea we have investigated finite clusters with 
different geometries and various numbers of electrons in order to determine the magnetic 
properties of their ground state. 
t Present address: Research Centre of Crete, PO Box 1527, Heraklio 71110, Crete, Greece. 
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The Hamiltonian for the two-dimensional Hubbard model generally has the fol- 
lowing form if nearest-neighbour and higher interactions are neglected. 

k(”) 

The creation of holes in the half-filled band system can critically influence the ground- 
state properties of the Hubbard lattice. As an example we refer to the result of Nagaoka 
(1968), who has proved that if only one hole exists in a lattice with no frustration, its 
ground state is ferromagnetic for large U. In contrast to this, in the half-filled band case 
the Hamiltonian for large U can be mapped to the Heisenberg model, so the ground 
state is antiferromagnetic. For these reasons we made a thorough investigation of the 
properties of holes in both the triangular and the square lattices. Finite clusters with 
these structures were studied by exact diagonalisation of the exact Hamiltonian ( l ) ,  or 
of the approximate Hamiltonian valid for large U ,  which was proposed in Harris and 
Lange (1967). 

In 5 2 we present results concerning a cluster with ten sites and eight electrons (or 
two holes). This cluster is a section of a triangular lattice, and its half-filled band case 
has been studied in our previous work (Mistriotis et a1 1988). In § 3 we present the 
approximate Hamiltonian proposed in Harris and Lange (1967), and discuss its range of 
validity. Finally, in § 4 we present results concerning a section of a square lattice with 
eleven sites and ten electrons (one hole). In this model we particularly study the influence 
on the ground state of an extra site lying outside the plane of the square lattice, which is 
connected to one or two sites of the main cluster. This extra site can stabilise the 
antiferromagnetic order for large U ,  because it causes localisation of the hole for certain 
values of the bond strength. 

2. A finite triangular lattice 

In this section we present results for a ten-site cluster (figure l), which is a section of a 
triangular lattice, and some of its properties have already been studied in Mistriotis et a1 
(1988). This cluster has sites with different coordination number, so here we examine to 
what extent this fact can influence the position of a hole, or the distance between two 
holes in the ground state of the system. 

We diagonalised the exact Hamiltonian (1) €or this cluster with eight electrons (two 
holes). Even though the maximum number of states was 44100, the corresponding 
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Figure 2. The average coordination number, CN, for the holes as a function of U / t  for the 
cluster of figure 1 with eight electrons. 

Table 1. Energy eigenvalues and eigenvectors of the one-particle system for the ten-site 
cluster. None of the states is degenerate. The number of sites is the same as in figure 1 

Eigenvector for site No: 

Eigenvalue 1 2 3 4 5 6  7 8 9 10 
~~ 

-2.1730 -0.259 
-2 0.289 

-1.3028 0.245 
-1.4142 -0.354 

-1.1393 -0.317 
0 -0.500 
0.1963 0.143 
1.4142 -0.354 
2.3028 -0.326 
4.1160 0.249 

0.342 
0 
0 

0.152 
0 
0.553 

-0.565 

0 
-0.425 

0.231 

-0.259 
0.289 
0.354 
0.245 

0.500 
0.143 
0.354 

0.249 

-0.317 

-0.326 

0.446 
0 

0 

0 

0.500 
0 
0.341 

-0.500 

-0.252 

-0.349 

-0.259 
-0.289 

0.354 
-0.245 
-0.317 
-0.500 

0.143 
0.354 
0.326 
0.249 

0.342 
0 
0 
0.565 
0.152 
0 
0.553 
0 
0,425 
0.231 

-0.259 
-0.289 
-0.354 
-0 245 
-0.317 

0.500 
0.143 

0.326 
0.249 

-0.354 

~ 

0.446 
0 
0.500 
0 

-0.252 
0 

-0.349 
-0.500 

0 
0.341 

~~ 

-0225 -0 225 
-0577 0 577 

0 0 
0 245 -0 245 
0 460 0 460 
0 0 

-0 177 -0 177 
0 0 

0 453 0 453 
-0 326 0 326 

matrix was diagonaiised successfully by the Lanczosniethod in relatively short computing 
time. Both the average coordination number of holes, and the average distance between 
two holes in the ground state were calculated as a function of the interaction energy 

More specifically, figure 2 shows that the average coordination number of a hole 
increases with U. In other words the holes prefer to be in the two central sites of the 
cluster, where the coordination number is 6. This behaviour is caused by the fact that 
the holes tend to occupy the highest state of the band of the corresponding non- 
interacting electron system, as U increases. The non-interacting electron Hamiltonian 
can be easily solved and the resulting eigenvalues and eigenvectors are presented in 
table 1. The eigenvector corresponding to the highest eigenstate shows that this state is 
indeed mainly localised at the sites with high coordination. This is to be expected, since 

ult. 
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Figure3. The average distance between the two holes. 011, a5 a function of C'/tfor the cluster 
of figure 1 with eight electrons. 

U / t  

generally the highest and the lowest states of the corresponding one-particle system are 
most strongly influenced by the largest hopping probability in the cluster. 

In figure 3 the average distance between two holes in the cluster is plotted as a 
function of U. We present results only for U larger than the one-particle bandwidth, 
because in this case there are no electron pairs in the ground state, so we have exactly 
two unoccupied sites in the system. Indeed no electron pairs can exist in the ground state 
if U is larger than the bandwidth, since any state with pairs has energy higher than the 
maximum spin state, where no pairs exist. For the examined cluster the bandwidth is 
equal to 6.2890t, as table 1 shows. 

Our results show a weak attraction between the two holes as U increases for a range 
of U-values between 7t and 50t. In other words the average distance between the holes 
decreases in this region of U. Nevertheless, if Uis further increased, the distance between 
the holes increases slightly again. More specifically the average distance between the 
two holes for U = 1000tis 1.935, while for U = 50t it is 1.905. This result is in agreement 
with what was found for the one-dimensional Hubbard lattice (Zotos 1988). Finally we 
note that the average distance between two holes when they are randomly placed on the 
cluster is only 1.733, which is substantially smaller than the value corresponding to large 
U. Therefore, an overall repulsion between the holes exists. 

In 5 4, we will examine the behaviour of holes also in a section of the square lattice 
with no frustration, but before doing that we present an approximate Hamiltonian, valid 
for large U ,  which drastically reduces the total number of states, and facilitates the 
computations. 

3. The approximate Hamiltonian for large U 

For large U we expect that no electron pairs can exist in the ground and the low-lying 
states of a Hubbard cluster. Therefore these low-lying states can be well determined if 
all states with pairs are projected out. This approximation yields the following effective 
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Hamiltonian (Harris and Lange 1967). 

Happ = HI + H2 + H3 

If there are no holes in the system (half-filled band case), H I  and H3 vanish, and the 
Hamiltonian is mapped to a Heisenberg Hamiltonian, while for a finite number of holes 
and large U ,  only the term H I  contributes significantly to the ground-state energy. 

The above approximation, namely that no electron pairs exist in the ground state, 
should be valid for U larger than the non-interacting electron bandwidth. This is 
explained by the fact that the existence of a pair raises the ground-state energy by U ,  
while the maximum energy needed for breaking a pair is equal to the non-interacting 
electron bandwidth. Moreover in Mistriotis et a1 (1988) we have shown numerically that 
the approximate Hamiltonian (2) gives quantitatively good results for values of U larger 
than approximately three times the bandwidth. In the next section, we use the above 
effective Hamiltonian to calculate the ground-state properties of a cluster with 11 sites. 

4. A finite square lattice with an extra outer site 

Models with strongly correlated electrons on a square lattice have been extensively 
studied recently, because this geometric structure corresponds to the CuO planes of the 
new superconducting materials. In this section we study a .\/lo X fl unit cell, which 
was first proposed in Oitmaa and Betts (1978). This cluster, even though it is finite, has 
no frustration if periodic boundary conditions are applied. Therefore it is an appropriate 
model for studying the spin structure of the infinite lattice. 

More specifically, we would like to study the influence of holes on the ground state 
of this cluster. Previous studies have shown that if a hole is introduced into the system 
(nearly half-filled band), a transition takes place as U increases for the ground state, 
which changes from an antiferromagnetically ordered state to one with local ferro- 
magnetic order (Kaxiras and Manousakis 1988). This transition occurs for a value of U 
(U = 33) slightly larger than the rate of validity of the effective Hamiltonian (2). There- 
fore it is an interesting question how the antiferromagnetic state can be stabilised in the 
presence of holes. 

Our results of § 2 show that a hole is localised at sites where the hopping probability 
is large. Hence we examined the possibility that the influence of a hole on the spin 
structure of the cluster is reduced, when one or more sites in the square lattice cluster 
are connected to an extra site with additional bonds, having a hopping parameter tl  > t. 
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Figure 4. Square lattice clusters connected to an 
outer site by (a) one or (b )  two bonds. These 
clusters are investigated in 5 4. 

We have therefore investigated the two clusters of figure 4, where the extra outer site is 
connected to one or two sites of the square lattice. The above clusters were studied by 
an exact diagonalisation of the matrix corresponding to the approximate Hamiltonian 

Before presenting our results it is necessary to determine the range of validity of the 
Hamiltonian (2) for the clusters of figure 4. In § 3, we explained that this approximation 
gives good quantitative results for the ground state if U is larger than about three 
times the one-particle bandwidth. The one-particle states for these two clusters can be 
determined analytically. If t is the energy unit, there are in both cases three eigenvalues 
equal to 1, three others equal to -1, and one equal to 0. The other four eigenvalues 
depend on t l  and have the form 

(2) * 

E = i {[tl + 17 k ( t ;  - 18t: + 225)1'2]/2}1'2 (3) 

for the cluster of figure 4(a), where there is only one connection to the extra site, while 
for the cluster 4(b) they are given by 

E = t {[2t: + 17 k (4t: - 12t: + 225)1'2]/2}''2. (4) 
Therefore the bandwidth can also be determined analytically. For all values of t l  that we 
have examined, the bandwidth is smaller than 20. Hence the approximation that no pairs 
exist in the ground state is valid for U 2 20. The value of U corresponding to three 
times the bandwidth, beyond which the results are considered to be also quantitatively 
accurate, is marked by a small vertical line in each curve of figure 5. In this figure we 
present the results for the following correlation function: 

This correlation is negative for antiferromagnetic order on the square lattice plane. 
Furthermore, we calculated the degree of localisation of the hole, in other words the 
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Figure 5.  The correlation function Ffor the clusters of (a) figure 4(a) and (b )  figure 4(b) with 
ten electrons as a function of U/t. The numbers on the curves correspond to the value of the 
hopping parameter t l / t  of the extra bonds. The broken horizontal line shows the value of the 
correlation function F for the square lattice cluster without the outer site with ten particles 
(half-filled band case). The small vertical marks indicate the values U/t ,  equal to three times 
the bandwidth of the non-interacting electron system. 

probability P that the hole lies in the outer site. These results are presented in figure 6. 
Figures 5(a) and ( b )  show the behaviour of correlation ( 5 )  as a function of Ufor the 

clusters of figures 4(a) and (b)  respectively, while t l  takes the values 1 , 2 , 3 ,  and 5 .  The 
broken horizontal line on these figures shows the value of the same correlation function 
( 5 )  corresponding to the half-filled band case of the ten-site cluster without the extra 
outer site. This value which is obtained by solving the corresponding Heisenberg model, 
can be used as a reference to check whether the antiferromagnetic order is preserved. 

Our results show that in the case where the extra site is connected to only one site on 
the plane, a transition from an antiferromagnetic state ( S  = 0) to a state with large total 
spin ( S  = 4) takes place as Uincreases, similarly to the transition that was observed for 
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the cluster without the outer site. The critical value of U where this transition occurs 
increases with tl. Particularly for t l=  5 ,  the antiferromagnetic order of the ground state 
is preserved for values of U as large as 100, although it is finally destroyed for very large 
U (=500). This behaviour can be understood as a result of the localisation of the hole at 
the outer site, which reduces its influence on the spin structure of the ground state, 
Indeed, as figure 6(a) shows, the probability P that the hole lies in the extra outer site 
exhibits a transition at the same values of U where the transition for the correlation 
function ( 5 )  takes place. 

Similar behaviour is also observed when the extra site is connected to two sites on 
the plane. Even though the existence of two bonds instead of one slightly changes the 
ground state properties, a transition from a small total spin state ( S  = 1) to the maximum 
spin ( S  = 5 )  state occurs. For this cluster, the antiferromagnetic order is also preserved 
for a range of U-values that increases with t , ,  but the antiferromagnetic correlation is 
weaker. Nevertheless a strongly antiferromagnetic ground state exists for some com- 
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binations of U and t l ,  as figure 5(b) shows. For example if t l  = 2 and U = 40 the value 
of the correlation function ( 5 )  is similar to that of the Heisenberg model. Figure 6(b)  
also shows that for this cluster, the reason for preserving the antiferromagnetic character 
of the ground state is the localisation of the hole at the extra outer site. 

Therefore, the existence of sites that lie outside the plane of a square lattice, and the 
type of bonding with sites on the plane can critically influence the properties of the 
ground state of the system. Note that if a second hole is introduced to the above clusters 
the value of the correlation function ( 5 )  becomes zero for all the values of U larger than 
20. 

5. Conclusions 

In this investigation we have described two main results which are conjectured to be also 
true for larger two-dimensional systems. 

(i) In lattices with frustrated sites the holes tend to occupy these sites. Moreover if 
two holes exist in the lattice, there is a net repulsion between them. In other words the 
average distance between the two holes is larger than the average distance between two 
holes randomly placed on the system. 

(ii) Additional sites outside asquare lattice connected to the main plane by a hopping 
parameter t l  > t ,  tend to trap holes for large values of U. As a result the influence of the 
holes on the main square lattice is reduced, and the antiferromagnetic order in the plane 
is stabilised. 

These interesting points should be further investigated in larger systems because 
they may be also relevant to high- T, superconductivity. 
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